期刊信息
曾用名:现代图书情报技术;计算机与图书馆
主办:中国科学院文献情报中心
主管:中国科学院
ISSN:2096-3467
CN:10-1478/G2
语言:中文
周期:月刊
影响因子:0.912234
数据库收录:
北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2017版);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);中文社会科学引文索引-来源(2017-2018);中文社会科学引文索引-来源(2019-2020);国家哲学社会科学学术期刊数据库;中国人文社科核心期刊;中国科技核心期刊;期刊分类:图书情报与数字图书馆
期刊热词:
研究论文
以互联网行业为背景下的数据分析通识(下)
【作者】网站采编
【关键词】
【摘要】编辑导读:数据分析听起来非常高大上,也是很多学生未来想从事的职业方向。在上篇文章中,作者介绍了数据分析如何入门、数据分析的基本流程,本文探索数据分析的进阶方法、数
编辑导读:数据分析听起来非常高大上,也是很多学生未来想从事的职业方向。在上篇文章中,作者介绍了数据分析如何入门、数据分析的基本流程,本文探索数据分析的进阶方法、数据分析的发展前景和优势,与你分享。
我们上节内容,给大家介绍了数据分析如何入门、数据分析的基本流程,相信大家对入门数据分析的一些要求和入门方法都有了相应的了解。(详情请看:互联网行业数据分析通识(中))那么,我们在这里继续探讨,数据分析入门之后的一些事情,包括数据分析的进阶方法、数据分析的发展前景和优势。目的是给大家提供一个做数据分析工作未来的规划的方向,同时对目前职业状态也会有一个更全面的定位了。
七、数据分析进阶
1. 数据分析进阶的阶段在入门阶段开始时,我们对数据分析基本流程有了一个概念的认识。那么,在进阶的阶段,要做的事情很简单,那就是:完善数据分析流程的基本面理解、更加深入地学习数据分析工具。
我们来看一下数据分析进阶的阶段:
第一阶段:基本信息处理
大部分情况下,公司的数据体系相对已经比较成熟了,所有到你手上的数据都是相对比较干净和统一了,这时候数据分析的主要工作就是各种数据的提取以及数据处理。
这里面涉及到,整理并了解各种数据指标,搭建数据监控数据表格,包含日常数据监控表、渠道汇总表、销售明细报表、新增用户表等等,而使用的工具一般为Excel。而SQL在此阶段可作为辅助工具,从数据库提取和统计数据,然后导入Excel继续做表格,在这个阶段要突破的技能就是 :Excel的技巧和使用。
下面简单介绍一下,在进阶阶段,对于Excel的技巧应该要掌握到什么样的水平。
- Excel的基本功能
- Excel常用函数的使用
- Excel数据透视表的使用
- Excel的基本图表的使用
基本功能就不必介绍了,之前有一篇推文提及到,如果在推文里面的练习题你可以做到满分,说明你已经基本合格了。
(推文:Excel基础知识,Excel功能篇,Excel函数篇)
在常用函数上,你需要掌握如下的函数:
- 聚合类函数,例如sumif,sumifs,countif,countifs,min,max等
- 文本类函数,例如text等
- 时间类函数,例如year,month,day,today,time等
- 查找类函数,例如vlookup,lookup,index&match,find等
- 判断类函数,例如if,iferror等
其他平时少用的函数,则大可不必花大量时间去研究,除非你立志要成为Excel表格大师。用的比较少的函数,在需要用的时候上网搜索相关资源即可,所以平时只需要掌握常用的这几类函数就足够了。
数据透视表的内容比较简单,跟BI工具的操作如出一辙:拖拉拽。将你想要透视的字段合理的进行规整,并适当的设置透视表的格式,当然如果你想考虑设计一个指标驾驶舱,并使用控件对驾驶舱数据进行更新,那么你还需要学习如何将透视表和控件参数进行联动的内容。
基本图表的使用非常重要,除了要学会Excel里面常用图表的创建方法,还需要学习如何用图表来准确的表达你想传达的信息。在图表设计上,表达内容比图表制作更重要,同时还要考虑基本的配色,来配合你传达内容的主题。如果在这一块想深入了解的话,这里面就是可视化的内容了。
Excel已经是非常成熟的软件,几乎所有使用技巧你都可以各种书籍以及相关的网站里找到并操练起来。如果数据量不大,且数据以数值为主,处理简单的计算逻辑,Excel基本就够用了。
而当你需要更强大的一些功能,比如对多张数据表灵活切换、分组、聚合、索引、排序,并且结合各种函数的使用,或采用到复杂些的数据分析模型、统计方法,则可进一步学习SQL以及学习Python的Pandas库进行更高阶的表格处理。
第二阶段:学会SQL获取数据
此阶段,我们要知道如何去获取数据,其中最常见的就是从关系型数据库中取数,可以暂时不会R语言和Python,但是必须掌握SQL数据库语言。大数据时代,数据正在呈指数级增长,面临的数据量会大大增加,从GB,到TB,甚至到PB,非常可观。因此,有着固定行数限制的的Excel显然无法满足需求这种大容量数据的分析。因此,学习数据库语言就显得非常有必要了。
SQL数据库语言至少要掌握哪些内容呢:
文章来源:《数据分析与知识发现》 网址: http://www.sjfxyzsfx.cn/zonghexinwen/2021/0714/1345.html