期刊信息
曾用名:现代图书情报技术;计算机与图书馆
主办:中国科学院文献情报中心
主管:中国科学院
ISSN:2096-3467
CN:10-1478/G2
语言:中文
周期:月刊
影响因子:0.912234
数据库收录:
北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2017版);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);中文社会科学引文索引-来源(2017-2018);中文社会科学引文索引-来源(2019-2020);国家哲学社会科学学术期刊数据库;中国人文社科核心期刊;中国科技核心期刊;期刊分类:图书情报与数字图书馆
期刊热词:
研究论文
数据分析:如何深挖原因,推动业务
【作者】网站采编
【关键词】
【摘要】编辑导语:数据是产品运行流程中必不可少的分析要素,通过数据分析,产品经理可以从中获得相关信息,提炼出用户体验感受,进而推动产品向有效的方向迭代升级。本篇文章里,作
编辑导语:数据是产品运行流程中必不可少的分析要素,通过数据分析,产品经理可以从中获得相关信息,提炼出用户体验感受,进而推动产品向有效的方向迭代升级。本篇文章里,作者针对如何通过数据分析挖掘原因、推动业务进行了相关介绍,一起来看一下。
数据分析的工作大部分的分析其实都是在找表面原因。
- 用户数下跌了:A渠道新用户下跌;
- 转化率提升了:落地页转化率上升;
- 留存率下降了:C地区用户留存率下降。
找表面原因其实就是通过指标体系的各种维度、子指标对问题进行拆解,得出一些初步的数据结论。
对于成熟的业务线来说,这种分析足够了。业务方拿到分析结论,自己稍加分析就知道后续该做什么。比如渠道人数下降了,对应的动作要么就是增加投放资源,要么就是优化投放的内容,提高拉新效果。
但是这是一般情况,有的时候我们就算给出了上面这些结论,领导也不满意。因为在具体执行的时候,还是不知道该做什么。
- 渠道人数下降了,但是我们没资源做新的投放,只能优化现有的文案。数据分析师来分析一下,用什么文案比较好?
- 落地页转化率不高,但是业务同学已经修改了八个版本的落地页,效果都不好,我也知道要优化落地页,但是到底要怎么优化?
表面原因会让业务进入误区,而且始终用这些结论驱动业务发展,很容易进入一个隐藏的陷阱,那就是追求短期收益而丧失了长期收益。
比如APP的日活下降,通过表面原因的分析最后发现是由于用户的留存率的下降导致的。
这个结论不能说错,但是很容易误导人。因为这个结论的潜台词是,整个业务是一台运转严密的机器,最终的产出下降了,是中间的一环出现了问题,现在既然留存率出了问题,那么我们把留存率搞上去的话,日活就能回归正常。所以提升留存率就成了之后的业务目标。
而一旦提升留存率这件事成为一个KPI之后,业务同学就会做一些能快速提升留存率的动作,比如签到活动、标题党PUSH之类的运营动作。
这些运营动作确实会给留存率带来短期的提升效果,但是对于整体APP的产品力提升并没有什么帮助,甚至这些动作还会让用户厌烦,长期来看反而会降低留存率。
一、第一性原理
1. 第一性原理面对这种情况,怎么办呢?不着急具体结论,我们先介绍一个概念:“第一性原理”。
这个词大概是2017年开始在互联网知识圈中火起来的,带火这个词的是马斯克。在一次TED采访中,他透露了自己非常推崇的思维模式,叫做 “First principle thinking”,翻译成中文就是「第一性原理」思维。
因为马斯克利用第一性原理在多个领域都取得了成功,于是“第一性原理”就被很多创业公司奉为圭臬。虽然如今马斯克的特斯拉负面消息不断,不过那就是另一个故事了。
第一性原理是指当你遇到一个问题,问题背后一定有其原因,这个原因的背后还有原因,就这样一步一步向前推演,直至找到问题最本质的原因。然后,从这个本质原因开始,重新向后推演,直到找到解决问题的方法。
2. 用户需求是商业的第一性原理我们回到刚才的案例来看一下。如果日活用户下降了,原因是什么?
之前我们给出的答案是因为留存率下降了,于是针对这个原因,我们给出了类似签到活动、push等业务动作。
如果根据第一性原理的思维模式,我们还要继续思考,留存率下降的原因又是什么呢?以及这个原因背后的原因又是什么。商业问题,追溯到最本质的根源,一定是用户需求。
我们的业务动作只是刚好符合用户的需求,于是这些业务动作让用户需求更好地驱动商业模式运转起来。所以用户的需求才是整个商业运转的第一性原理。
二、用户需求
1. 用户需求是不断变化的那知道了用户需求是商业模式的第一性原理,so what?
第一性原理如果保持不变,那么基于推导出的结论和模式就是稳定的。就比如机器解决的是确定性的问题,所以机器的结构也是确定性的,如果一个齿轮松动了,加固下齿轮问题就解决了。
但第一性原理如果变了,后面所有基于这个原理的逻辑就全都不适应了。而商业解决的就是这样的非确定性的持续变化的问题。
文章来源:《数据分析与知识发现》 网址: http://www.sjfxyzsfx.cn/zonghexinwen/2021/0525/1186.html