期刊信息
刊名:数据分析与知识发现
曾用名:现代图书情报技术;计算机与图书馆
主办:中国科学院文献情报中心
主管:中国科学院
ISSN:2096-3467
CN:10-1478/G2
语言:中文
周期:月刊
影响因子:0.912234
数据库收录:
北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2017版);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);中文社会科学引文索引-来源(2017-2018);中文社会科学引文索引-来源(2019-2020);国家哲学社会科学学术期刊数据库;中国人文社科核心期刊;中国科技核心期刊;期刊分类:图书情报与数字图书馆
期刊热词:
研究论文
曾用名:现代图书情报技术;计算机与图书馆
主办:中国科学院文献情报中心
主管:中国科学院
ISSN:2096-3467
CN:10-1478/G2
语言:中文
周期:月刊
影响因子:0.912234
数据库收录:
北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2017版);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);中文社会科学引文索引-来源(2017-2018);中文社会科学引文索引-来源(2019-2020);国家哲学社会科学学术期刊数据库;中国人文社科核心期刊;中国科技核心期刊;期刊分类:图书情报与数字图书馆
期刊热词:
研究论文
66个最常用的pandas数据分析函数
【作者】网站采编
【关键词】
【摘要】说起pandas这个是python数据清洗的利器,它可以让你像sql一样操作数据,同时可以对数据进行各种计算,转换完成后还可以方便的存储到excel,转化为array、Matrix供进一步(模型)使用。
说起pandas这个是python数据清洗的利器,它可以让你像sql一样操作数据,同时可以对数据进行各种计算,转换完成后还可以方便的存储到excel,转化为array、Matrix供进一步(模型)使用。
但是网上关于pandas的知识点比较散,分门别类的来介绍pandas的常用函数,能够满足你对于pandas学习的所有需要,本文介绍的函数在实际中非常实用。
本文中,我们将使用如下缩写:
首先需要先导入2个库:
从各种不同的来源和格式导入数据
导出数据
使用以下命令将DataFrame导出为CSV,.xlsx,SQL或JSON。
创建测试对象
查看、检查数据
数据选取
数据清理
使用这些命令可以执行各种数据清理任务。
筛选,排序和分组依据
使用这些命令可以对数据进行过滤,排序和分组。
数据合并
使用这些命令可以将多个数据帧组合为一个数据帧。
数据统计
使用这些命令来执行各种统计测试。(这些也都可以应用于系列。)
文章来源:《数据分析与知识发现》 网址: http://www.sjfxyzsfx.cn/zonghexinwen/2021/0316/799.html