期刊信息
曾用名:现代图书情报技术;计算机与图书馆
主办:中国科学院文献情报中心
主管:中国科学院
ISSN:2096-3467
CN:10-1478/G2
语言:中文
周期:月刊
影响因子:0.912234
数据库收录:
北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2017版);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);中文社会科学引文索引-来源(2017-2018);中文社会科学引文索引-来源(2019-2020);国家哲学社会科学学术期刊数据库;中国人文社科核心期刊;中国科技核心期刊;期刊分类:图书情报与数字图书馆
期刊热词:
研究论文
智能金融的基石--自然语言处理和知识图谱
【作者】网站采编
【关键词】
【摘要】金融行业因其与数据的高度相关性,成为人工智能最先应用的行业之一,而自然语言处理(NLP)与知识图谱作为人工智能技术的重要研究方向与组成部分,正在快速进入金融领域,并日益
金融行业因其与数据的高度相关性,成为人工智能最先应用的行业之一,而自然语言处理(NLP)与知识图谱作为人工智能技术的重要研究方向与组成部分,正在快速进入金融领域,并日益成为智能金融的基石。
一般的金融科技公司只会集中在其中的某些业务方向,只要能深入掌握两到三种能力,就能具有相当的竞争力。在这些业务场景中,自然语言处理(NLP)和知识图谱技术往往需要共同应用,才能发挥出最大的效能。同时,一种核心能力可以在多个智能金融应用场景中得到应用,这些应用场景包括:智能投研、智能投顾、智能风控、智能客服、智能监管、智能运营等。
接下来我们将分析不同的核心能力在各个应用场景的分布情况,对每一种核心能力进行简要介绍,给出它的应用场景,并列举部分国外的典型案例以供大家能够更好的理解和上手。
金融语义应用场景概念框
01智能问答和语义搜索
智能问答和语义搜索是自然语言处理(NLP)的关键技术,目的是让用户以自然语言形式提出问题,深入进行语义分析,以更好理解用户意图,快速准确获取知识库中的信息。在用户界面上,既可以表现为问答机器人的形式(智能问答),也可以为搜索引擎的形式(语义搜索)。智能问答系统一般包括问句理解、信息检索、答案生成三个环节。智能问答系统与金融知识图谱密切相关,知识图谱在语义层面提供知识的表示、存储和推理,智能问答则从语义层面提供知识检索的入口。基于知识图谱的智能问答相比基于文本的问答更能满足金融业务实际需求。
智能问答和语义搜索的价值在金融领域越来越被重视。它主要应用的场景包括智能投研、智能投顾和智能客服。在智能投研领域,投研人员日常工作需要通过多种渠道搜索大量相关信息。而有了金融问答和语义搜索的帮助,信息获取途径将是“Just ask a question”。并且,语义搜索返回的结果不仅是平面化的网页信息,而是能把各方面的相关信息组织起来的立体化信息,还能提供一定的分析预测结论。在智能客服和智能投顾领域,智能问答系统的应用主要是机器人客服。机器人客服目前的作用还只是辅助人工客服回答一些常见问题,但已能较大地节省客服部门的人力成本。
典型应用案例如美国Alphasense公司为投研人员整合碎片化信息,提供专业金融知识访问工具。AlphaSense公司的产品可以说是新一代的金融知识引擎。它从新闻、财报、研报各种行业网站等获取大量数据、信息、知识形式的“素材”,通过语义分析构建成知识图谱,并提供高级语义搜索引擎、智能问答、交互式知识管理系统、文档(知识)协作系统,以对金融知识进行更加有效的管理、搜索、使用。
02资讯与舆情分析
金融资讯信息非常丰富,例如公司新闻(公告、重要事件、财务状况等)、金融产品资料(股票、证券等)、宏观经济(通货膨胀、失业率等)、政策法规(宏观政策、税收政策等)、社交媒体评论等。
金融资讯每天产生的数量非常庞大,要从浩如烟海的资讯库中准确找到相关文章,还要阅读分析每篇重要内容,是费时费力的工作。如果有一个工具帮助人工快速迅捷获取资讯信息,将大大提高工作效率。资讯舆情分析的主要功能包括资讯分类标签(按公司、产品、行业、概念板块等)、情感正负面分析(文章、公司或产品的情感)、自动文摘(文章的主要内容)、资讯个性化推荐、舆情监测预警(热点热度、云图、负面预警等)。在这个场景中,金融知识图谱提供的金融知识有助于更好理解资讯内容,更准确地进行资讯舆情分析。
资讯舆情分析的应用主要在智能投研和智能监管这两个场景。目前市场上的辅助投研工具中,资讯舆情分析是必不可少的重要部分。资讯舆情分析作为通用工具更多是对海量定性数据进行摘要、归纳、缩简,以更加快捷方便地为投研人员提供信息,支持他们进行决策,而非直接给出决策结论。在智能监管领域,通过资讯舆情分析,对金融舆情进行监控,发现违规非法活动进行预警。
03金融预测和分析
基于语义的金融预测即利用金融文本中包含的信息预测各种金融市场波动,它是以NLP等人工智能技术与量化金融技术的结合。
利用金融文本数据帮助改善金融交易预测模型的想法早已有之。本世纪初,美国就有人利用新闻和股价的历史数据来预测股价波动。2010年后,社交媒体产生了大量数据,基于Twitter、Facebook来预测股市的研究项目很多。最近,深度学习被大量应用在预测模型中。金融文本数据提供的信息是定性的(qualitative),而通常数字形式的数据是定量的(quantitative)。定性分析比定量分析更难,定性信息包含的信息量更大。有分析表明,投资决策人员在进行决策时,更多依赖于新闻、事件甚至流言等定性信息,而非定量数据。因此,可期待基于语义的金融预测分析大有潜力可挖。这个场景中涉及的关键NLP技术包括事件抽取和情感分析技术。金融知识图谱在金融预测分析中具有重要的作用,它是进行事件推理的基础。例如在中兴事件中,可根据产业链图谱推导受影响的公司。
文章来源:《数据分析与知识发现》 网址: http://www.sjfxyzsfx.cn/zonghexinwen/2020/1110/496.html