期刊信息
刊名:数据分析与知识发现
曾用名:现代图书情报技术;计算机与图书馆
主办:中国科学院文献情报中心
主管:中国科学院
ISSN:2096-3467
CN:10-1478/G2
语言:中文
周期:月刊
影响因子:0.912234
数据库收录:
北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2017版);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);中文社会科学引文索引-来源(2017-2018);中文社会科学引文索引-来源(2019-2020);国家哲学社会科学学术期刊数据库;中国人文社科核心期刊;中国科技核心期刊;期刊分类:图书情报与数字图书馆
期刊热词:
研究论文
曾用名:现代图书情报技术;计算机与图书馆
主办:中国科学院文献情报中心
主管:中国科学院
ISSN:2096-3467
CN:10-1478/G2
语言:中文
周期:月刊
影响因子:0.912234
数据库收录:
北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2017版);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);中文社会科学引文索引-来源(2017-2018);中文社会科学引文索引-来源(2019-2020);国家哲学社会科学学术期刊数据库;中国人文社科核心期刊;中国科技核心期刊;期刊分类:图书情报与数字图书馆
期刊热词:
研究论文
课程评价中考虑误导抑制的关联规则高效提取
【作者】网站采编
【关键词】
【摘要】针对高校课程评价,研究数据驱动的教学管理与决策问题.由某校的课程评价指标体系,确定涵盖学生、教师、同行专家和教学督导等多维度评价数据的数据结构.对采集的调查问卷数据进行
针对高校课程评价,研究数据驱动的教学管理与决策问题.由某校的课程评价指标体系,确定涵盖学生、教师、同行专家和教学督导等多维度评价数据的数据结构.对采集的调查问卷数据进行清洗和转换等预处理后,构造完成供数据挖掘的数据集.考虑误导性规则抑制,使用基于差异兴趣度的改进Apriori关联规则挖掘算法,提取评价指标间的关联规则.将发现的关系模式与使用传统Apriori关联规则挖掘算法所得结果进行比较,显示本文所用改进Apriori方法能够提高知识发现的效率和准确性,对课程建设具有更强的指导作用.
文章来源:《数据分析与知识发现》 网址: http://www.sjfxyzsfx.cn/qikandaodu/2021/0726/1361.html
上一篇:数据挖掘技术的应用
下一篇:面向知识发现的模糊本体融合与推理模型研究