期刊信息
刊名:数据分析与知识发现
曾用名:现代图书情报技术;计算机与图书馆
主办:中国科学院文献情报中心
主管:中国科学院
ISSN:2096-3467
CN:10-1478/G2
语言:中文
周期:月刊
影响因子:0.912234
数据库收录:
北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2017版);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);中文社会科学引文索引-来源(2017-2018);中文社会科学引文索引-来源(2019-2020);国家哲学社会科学学术期刊数据库;中国人文社科核心期刊;中国科技核心期刊;期刊分类:图书情报与数字图书馆
期刊热词:
研究论文
曾用名:现代图书情报技术;计算机与图书馆
主办:中国科学院文献情报中心
主管:中国科学院
ISSN:2096-3467
CN:10-1478/G2
语言:中文
周期:月刊
影响因子:0.912234
数据库收录:
北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2017版);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);中文社会科学引文索引-来源(2017-2018);中文社会科学引文索引-来源(2019-2020);国家哲学社会科学学术期刊数据库;中国人文社科核心期刊;中国科技核心期刊;期刊分类:图书情报与数字图书馆
期刊热词:
研究论文
灰色关联分析和深度学习的大学生就业质量评价
【作者】网站采编
【关键词】
【摘要】大学生就业质量与多种因素有关,每一种因素对大学生就业质量评价贡献不一样,传统方法没有考虑该问题,使得大学生就业质量评价精度低。为了改善大学生就业质量评价效果,提出灰色关
大学生就业质量与多种因素有关,每一种因素对大学生就业质量评价贡献不一样,传统方法没有考虑该问题,使得大学生就业质量评价精度低。为了改善大学生就业质量评价效果,提出灰色关联分析和深度学习的大学生就业质量评价模型。首先选择大学生就业质量的评价指标,并采用灰色关联分析确定每一种指标对大学生就业质量评价结果影响的权值;然后根据权值重构大学生就业质量评价学习样本,通过深度学习算法对大学生就业质量评价模型的输入和输出之间的变化关系进行训练建模,得到最优的大学生就业质量评价模型;最后采用多个具体大学就业质量数据进行实例分析,所设计模型的大学生就业质量评价精度大约为93%,而当前经典模型的大学生就业质量评价精度却低于90%,同时所设计模型提高了大学生就业质量评价训练速度,提升了大学生就业质量评价效率。
文章来源:《数据分析与知识发现》 网址: http://www.sjfxyzsfx.cn/qikandaodu/2021/0303/687.html
上一篇:数据分析技术对网络授课辅助能力的探索
下一篇:全球船用燃料由脱硫向脱碳转变